
UNCLASSIFIED

AD 294991

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL SiTATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED



NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



p9 6iS-2-y

Report No. 63-02

:'ovember , 1962

INC.

Forces On A flovering Slender Body of Revolution

Submerped Under '.Javes of Moderate 4ave length

by

Theodore R. Goodran

Oceanics, *Inc.* L
Technical Industrial Park
Plainview, L.I., N~eu York



Forces nn A tcverinp S1eno.>r 3ody of Ievolution

Sub-nerped Under -.aves of !tderate 1vt!er1.tiv

Tho'ore P. Goodman

Submitted to:

DenTartrent of the lavy
dureau of Ships
,'ashinpton) 25, D.C.

Uner Centract .. o. Albs - j6514

Oceanics, Inc.
echnical Industrial Park

Plainview, L. I. Jew York



The forces on a slender body cf revclution

hcverin - under waves are deterrineo. It is assumed

in the analysis that tna wavs-1ergth is of the sarne

order of magnitude as the bcdv radius, i.e. kr-O(l)

where k is tha !iave number and P is the body

radius. Two cases are consicereu: bea~m seas anu head

seas. It is shown that for head seas ccnverntional

slender Dody theory is inade-juate, and, for this case,

a poneralization of slender boCy theory is cevelcped.



LIST OF PHYSICAL SYMBOLS

a wave amplitude

A2 (W3) spectrum of random sea

c wave propagation speed ( :CJ/k)

C empirical constant in Neumann spectrum (x32.8 ft 2 /sec5)

g acceleration due to gravity (32.2 ft/sec 2 )

h depth of body centerline from undisturbed waterline

k wave number (a ci2/g)

'L body length

p pressure

R body radius

S body cross-sectional area (r r R2 )

t time

(ulvow) body velocities

Vw  wind speed

X surge force

(x r ,) inertial cylindrical coordinates

(xjy~a) inertial cartesian coordinates - see Figure 1

Z vertical force

angle between body axis and wave creste

wavelength a (27 /k)

(,~,,.p~)body displacements

water density

velocity potential

wave frequencyF
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FORCES ON A HOVERING SLENDER BODY OF REVOLUTION

SUBMERGED UNDER WAVES OF MODERATE WAVELENGTH

I. INTRODUCTION

When a slender submerged body is hovering in a velocity

field caused by a sinusoidal wave train of large wavelength, the

forces on the body can be calculated using conventional slender

body theory. Such a calculation has been performed, for example,

by Kaplan and Hu [1]. In this approach the orbital velocity

potential associated with the undisturbed waves is expanded in

the neighborhood of the body, in which case the problem reduces

to solving a two-dimensional potential problem in the cross flow,

and the force per unit length can be determined in terms of the

added mass of the section. An implicit assumption which is made

in conventional slender body theory is that the longitudinal

variations are small in comparison with the lateral variations.

It is clear that for a long slender body in long waves this as-

sumption is satisfactory except, perhaps, locally near a blunt

end or at the beginning of an appendage. Local aberrations can-

not, of course, affect the total force to any great extent.

A different situation prevails when the wavelength is

of the same order of magnitude as -the dimensions of the cross-

section and the waves are not bean-on. In this case, longitudi-

nal variations become of the same order of magnitude as lateral

variations and it is necessary, in calculating the body potential,



to take this into account. A similar situation would prevail if

one were to calculate the flow about a slender corrugated body

with no waves if the wavelength of the corrugations were of the

same order as the cross-sectional dimensions.

In the present report we will deal with the case of a

slender body of revolution, and we will consistently atake the

assumption that the wavelength is of the same order of magnitude

as the body radius, i.e. kR a 0(1) , in which case, since the

body is slender, k1 >> 1 W de will then seek thu leading term

in the expression for the force consistent with this ordering

hypothesis. In the course of the analysis, body motions will be

included. However, these motions are assumed to be wave-induced,

and, as a consequence, their oscillatory part will be at most of

the order of the wave orbital motions; in other words, an upper

bound an the oscillatory part of the body motion is given by the

motion of a particle. This fact will aid us in simplifying the

expressions that are obtained. Two cases will be considered: beam

seas and head seas.

The velocity potential of the waves with wavelength X

amplitude a , and wave propagation speed c is given by:

TwM0 ~k~t [acoco-*} 1

where k a 21 a5/c2 and the .real part is to be taken. The

coordinates (xqyqz) are fixed with respect to an inertial system*

with a pointing upward and x directed along the axis of the

undisturbed body. The angle j is the angle between the x axis
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and the wave crests (see Figure 1.). In terms of a coordinate

system fixed with respect to the body, the wave potential becomes

.CCe'.k e -ft 41L x 4- ) CYCo (y1~n~c+ (2)

where C e rr ,, represent the (xy z) components of the

body displacements. Their time rates of change will be denoted

by (uVw).

II. BEAM SEAS

For beam seas a 7 , /2 and Equation (2) reduces to

te c L J '~ (3)
ca)

There is no x variation in the wave. potential for beam soas,

and consequently none in the wave orbital velocities. Furthermore,

the x component of orbital velocity is zero* decauce of this,

the longitudinal variations are indeed small compared with the

lateral variations, and, if the body is slender, it is permissable

to use conventional slender body theory. The body potential,

therefore, satisfies the two dimensional Laplace equation in the

cross flow. Let us transform to polar coordinates in the cross

flow:

ysrcose
(4')

z a r sin e

The body potential can be determined by using the circle theorem

[23. The wave potential plus body potential satisfies the condi-
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tion of no normal flow on the circle r, , and is given by

1%+ 12, W ':l(k .-;& Xr,, cc* k (r c.on 0 + q-L_

+ &C. (  r,( o + -. (5 c)

where the real part has been taken* To this must be added the

potential induced by the body notions v end v (see Figure 1.).

The complete potential Is thus given by

+ A'oss + %in0.(6r ru

The radial and circumferential velodtles evaluated at

the body (r a R) are:

2.t I ce-  't' "  [o-~c& kLk

-vne +W c@iG (7)

vaVco*d +W Sine S

The time rate of change of the velocity potential evaluated on

the body is given by

Here th~ ke t Chic4 n tnoh

Here the terms proportional to vand we have beenipored.



These ignored terms give rise to standard added mass ters in the

force which can be added in at the end of the analysis.

The pressure on the body is obtained from the (two-

dimensional) Bernoulli equation in moving coordinates:

V (10)

Transforming to polar coordinates with the aid of Equation (4).

it is found-that 4P r
t .r r

- ± (11

However$ we will consistently ignore squares of the body motions,

and since ir is of the order of the body motions according to

Equation (8), the pressure simplifies to

Vit- -.t (Ws** l .(L (12)

The vertical (heaving) force per unit length is given

by
2r

Equations (7-9) must be substituted into Equation (12)

and, thence, into Equation (13). In so doing, all quadratic teim

in the body motion are to be ignored. In calculating the term

i ? - )' which appears in Equation (12), it.will be necessary

to square Equation (M). and in so doing the term cato(O- ktc" k1,4c-kt)

will appear. The double angle formula
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cos L2 (14)

must be used, and the higher harmonic term will be ignored. The

heaving force per unit length is then given by

~2sin kSk (RA;0!6 KP +It ~S*'r. (4(l

0

+Z O.ks-ze 1Wnesie-OG0

k~sin Q o

n( -Oz - (15)

There are five different integrals ir, Equation (15) and

each of them is determined in the Appendix. The final result is

'Z ik%1k1k aIl 4. -k~e sinkc) I
ZSK 1  a-4 ekS (16)

where I, is. a modified Bessel function of the first kind.

The first term in this equation is a suction force. It

is of second order in wave amplitude, and attenuates twice as

rapidly with depth h as the second term which is oscillatory.

Nevertheless, for certain operations it is important to retain
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the suction force becduse it persistently acts upward and tends

to make the body rise. .otice that explicit dependence on the

body velocities (vw) has disappeared. The result still de-

pends on body motions, however, through the displacements (4)! ).

A. An Alternative Derivation

The derivation of the heaving force given above is per-

fectly straightforward. we will now present an alternative deri-

vation from a different point of view which is actually a prologue

to the derivation of the heaving force for a body in a random sea.

Consider the body displacements I j 4 and the body

velocities vw , Fromi the equations of motion of the body we

can expect that the body motions will consist of a drifting motion

which varies slowly with time and which is due, primarily, to the

suction force, plus an oscillatory motion which varies rapidly

with time and which is due, primarily, to the oscillatory force.

Hience, let

4). . 4 '

,' - V (17)
W" wt \A1

where the quantities with subscript zero denote the drifting motions,

and the primed quantities denote the rapidly oscillating motions.

The velocity potential and pressure can be similarly separated,

(16)



If the relations between all quantities were linear then we could

state unequivocally that the oscillating input caused the oscillat-

ing output and the drifting input caused the drifting output.

However, Bernoulli's equation for the pressure is quadratic with

respect to the velocity potential, and even the potential itself,

Equation (6), involves the body motions (I,$) in a nonlinear

way. It is clear, therefore, that the drifting part of the input

can affect the oscillatory part of the output and vice versa.

Substituting Equations (17,18) into Equation (6) there is obtained

I- k ;0-..o~ rsli G)) obkr 4oG+ t

+i (19)

Similarly substituting into Bernoulli's equation, Equation (12),

there is obtained

zr' ~j ~(20)

We will retain terms which may be of the order of the wave ampli-

tude squared and ignore higher order terms. In so doing, we will

assume that the oscillatory motions are, at most, of the order of

the wave amplitude . This is a reasonable assumption in view of

the fact that the motions are solely wave-induced. Thus in Equa-

tion (19), we expand the exponential and trigonometric terms

treating and as small quantities, and retain only linear
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terms in the expansion.

O.F e7k .. .S r si$) ,s V:.r C..6 '9 + i

1 r (21)

Now average EquatIon (21) over one period and denote the averag-

ing with a bar. Clearly, the average of any primed quantity is

zero. Difting quantties will be assumed to be almost constant

over one period and, therefore, unaffected by the averaging pro-

cess. They are said to sift through the averaging integral.

-k (1 -1 . 0'; P--
it I C rcot v 4- I's! k (rco. c t

+n Vl0ons a-W (22)

Subtracting Equation (22) from Equation (21) we obtain the follow-

ing equation for
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= ce- cos, k (r coi. + . "

- 49"0 e r%- 6e )

- k 0 4 +csen" o

+ . k-S.- 1' Sin&)
- .e . Ico )

r"

The first and sixth tem in the brackt must be retained

but all other terms can be ignored since they give rise only to

higher harmonics. 4hence,

I + -k(6-S.- 9-'1 %"

r

+ V C06 6(23.)

To termine theean preussre, average Equation (20)

over one prieodo

To deerin te mean .- esue , arg E (2)

over one
+CV "_%]
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The term can be obtained from Equation (22). In perform-

in& the differentiation, it will be assumed that co ) a,

filter out of the averaging, However, since the first four terms

are already of second order in the wave amplitude, and since if.
and are wave induced, any terms which arise from the filter-

ing of and will be of higher order and can be ignored.

Terms which arise from the filtering of c , on the other hand' ,

must be retained.

It

+o''k' A 9 ( +Co0i.'j..)4. cbk(26)

The terms proportional to ;o and w, have been ignored, consist-

ent with our policy of not considering added mass terms.

Ignoring terms of the order of the body motion squared,

the mean pressure becomes

(27)

To obtain p subtract Equation (27) from Equation (20).

If all terms of second order in the body motion and all higher

harmonics are ignored, there is obtained

When substituting 0. into Equation (28) it is permiss-

ible to ignore the first four term in Equation (22) because they

give rise to term of higher order in the pressure. Then, upon

evaluating at the body, Equation (28) simplifies to
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- ' 1... .2(v.Sifl .W.COSQ)\s4~ ~*(29)

Upon substituting Equations (24g26) into Equation (27), letting

r a R and integrating with respect to 4. according to Equation

(13), the mean vertical force per unit length becomes after high-

er order terms awe ignored:

'I co t.Q ..

"~v~c1.~'J. ~COI~t.CL~*) 1  (30)

The fluctuating vertical force per unit length is obtained by in-

tegrating Equation (29) with respect to - . and there is obtained:

-": ~ ,... 0 " ;),,,~-l (31 )

It can easily be seen that Equation (31) is identical to theV

second term of Equation (16) with a0 and S. replacing l and

,S respectively. The first term of Equation (30) is the same

as the first term of Equation (16) with 1. replacing C . The

second and third terms of Equation (30) are implicit in Equation

(16) also, for if we let NJa No+* andS a . and

then expand Equation (16) retaining torms of the order of the

square of the wave amplitude, the seoond and third torms of Equa-

tion (30) are reproduced identicaly once haher harmonios are

ignored. The oscillatory force given by Equation (31) is identi-

cal with the result which would have been obtained if the long

wave approximation were made at the outset of the analysis (see

El). It can be shown that all other first order forces and
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moments are, likewise, identical to their long wave limits in

beam seas*

If the oscillatory part of the motion is such that the

body moves like a water particle (which is very nearly the case),

then
-

(32)

Substituting into Equation (30)0 there is obtained the following

expression for the mean suction force per unit length-*:

k'R

The universal function is !

tabulated in Table I.

U.SA. RANOMt SigS

Suppose the wave potential, as given by Equation (1)

for a sinusoidal wave train, is replaced by a function of a ran-

don variable with spectrum At (G) . Using the formulation of

Pierson Ca], the complete potential$ Equation (6), is replaced by.
do

k&c.- r~c* 4ceki o) KSins)(Lll r oSr

•\ , '"V. ' $S

Nov asume that all quantities can be written in the form

* )rsl( )o b i n by Ol 1 .

*T][his result hasl been obtained independently by O8ilvie £3].
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where the subscript zero represents the mean value, and is a slow-

ly varying function of time. Quantities with a prime are fluctuat-

ing random quantities with zero mean. The similarity between this

notation and the notation used in the preceding section will be

noted.

Continuing the parallel with the preceding section, we

will operate on the potential and the pressure with the average:
.T

e V"(36)

This average replaces the average over one period which

was used in the preceding section. By the limit T-000 we mean

that T is large enough so that a meaningful sample of any random

quantity is included, but small enough so that mean quantities are

essentially constant over this time interval. Thus, quantities

with subscript zero will filter through the operation represented

by Equation (36), just as they did for the average over one period

in the periodic case. The analysis is identical in every respect

to the analysis performed for periodic fluatuations, provided Ony

that we interpret the bar to be the statistical average represent-

ed by Equation (36).

Suppose the fluctuating part of the notion to be such

that the body follows a water particle. Then the equation corre-

spmding to Equation (33) is

O" 2 (37)

ax 
kk
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The fluctuating force per unit length is

'A 0

If the wave spectrum is a Neumann spectrum for a fully developed

sea (Reference E4])

S -- e. (39)

Then, letting C. , k 0 , Equation (37) becomes

42 I.fLlR ) - j (4.0)4 . ,, L-_. 7,,
If the waves are long with respect to the body radius# then

,1k.A .  14"__ , and the w0 integral can be evaluated

'r'nctly. The integrated force can then be evaluated to be

Z .(r)~ C(?, 4[ & -] e.. (4.1)

where I is the volumetric polar moment of inertia. If the waves

e~ra not long, but the body is deeply submerged I"J
the W integral can be evaluated approximately by the method of

steepest descents (5]. The result is

(1)eth ien 4 foy.(IV
2. e - C?

whexre the integral is taken over the length of the bodiy,
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III. EAD. SEAS

For head seas a 0 , and Equation (2) reduces to

Sw c- e.A -knF J. + W (43)

There is an explicit x variation in the wave potential for head

seas, but no y variation, Consequently, there are x varia-

tions in the orbital velocities, but the y-coponent of orbital

velocity is zero. The wavelength of the orbital velocity will

be assumed to be of the same order as a cross-sectional dimension,

i.e. kR a 0(1) 9 and, as a consequence, conventional slender

body theory is not applicable. For convenience, let

and transform to polar coordinates according to Equation (4).

The wave potential then becomes:

e

Expanding the wave potential as a Fourier series in $ 9 there

is obtained

where 1. Is a modified Bessel function of the first kind.

The body potential must satisfy the three dimensional

Laplace equation. In cylindrical coordinates, this potential can

be expressed in terms of line sources and higher order line singu-
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larities, as follows:

r Co lce'

The potential , will be used to cancel the normal flow et the

bodys r a R(x) I It is, likewise, necessary to add another

potential, m , to account for the body motions. However, the

body motions induce velocities which are slowly varying in the x

direction, and, consequently, an ordinary slender body representa-

tion will be adequate for this potential. In other words* the

potential is also represented by an equation of the form

of (47)# but we may take the limit r-0 without regard to the

rapidity of the variation of f with respect to x, * This

limit yields (see Reference rG i):

- 2.. ~ (48)

where

The expression for Sb can also be simplified by taking the limit

r-P 0 , but, because this potential mot cancel the wave orbital

velocities, the strength of the singularities will vary rapidly

with x, * Henone lot

where Fn is a slowly varying function of x E " quation (47)
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becmes e

0 (51)

We must now take the limit k-0 , which expresses the fact that

the wavelength is small compared with the body length, i.e. ki ) 1.

According to a lemma of Riemann-Lebesque, Reference [?], integrals

of the form found in Equation (51) will vanish as k-*0O pro-

vided the non-oscillatory part of the integrand has bounded varia-

tion. However, if we simultaneously take the limit r -P 0 , it

is clear that all the integrands will become singular in the

neighborhood of x e a x . Hence, only that part of the integrand

in the immediate vicinity of the singularity will contribute to

the integralo We ay, therefore, evaluate Fn(x,) at x, • x

and bring Fn  outside the integral sign. FurtheuoXVe, we May

let the limits of integration extend from x a -of to x1 a +00

since the results of so doing will contribute a negligible amount

to the value of the integral by virtue of the RFemam-Lebesque

loe In accordance with these concepts, Equation (51) becomes

e. ~ ~ ~ -Y Q Z xc~e~ ~e ($2)
' r- i. ''

The inlagrals can be expressed in tex1s of modified Bessel func-

tions of the second kMiod with the result that
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In the neighborhood of the bodyg the quantity (kr) which ap-

pears as the argument of the Bessel functions, is postulated to

be of order unity, and, as a consequence, Equation (53) cannot

be simplified any further. The complete potential is given as

the sum

where expressions for * and are given by Equations

(46,48,5) respectively.

The boundary condition for a three-dimensional body of

revolutions including the body motions surges heaves and pitch,

has been derived by Cuthbert and Kerr in Reference (I]:

where the subscripts xr denote partial derivatives. By corw f
paring the second term on the left with the first term an the

right, it is clear that the second term on the left can be neglect-

ed for a slender body# and the boundary condition then simplifies I

to

Differentiating Equations (4694i,b) with respect to x and r

and substituting into Equation (56), there is obtained
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OA tk

UL + d.C.4 e lCz I~ oz, (kV.d)n 2.11n 1 0 S

42. RVI

lI

(- 4- a.(*)n_ n)csn(Di

(X F r(n)cok M
T)

Consider the termts corresponding to n 0:

We equate the non-oscillatozry partes

To the first order in body radius we obtain

e ut o(60)

We now equate the oscillatory Parts:



If kR a 0(1) t then, to the first order in body radius W 'ob-

..ta, (62)

Now consider the non-oscillatory terms corresponding to n s 1 I
To the first order in body radius we obtain

R! R\W (63)

Finally* consider the oscillatory terms corresponding to n Z> 1

To the first order in body radius ve obtain

e~* F{ I. ce ' (a ,) r (n f. , c
(V I I

Substituting back into the potential$ ve obtain after some corn-

bining and sLmplifying

3 I) Kfi (tR) -E~) ,coSn Xe)

where S(30 a ..2U-~(L,~x ~.~,~~-d4e and
Uv

it =' h'O

2i. ri>O0

The partial derivatives of with respect to , d j. x

and t evaluated at the body r a R are given respectively by

~ u~A.&-co$(~~)(66)
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W__. (k (67)

wher~e the Wronskian :dentiL4L,

T (70)

has been employed see Refernce (9]). In addi tion, h4gher order

term in bod radiusm have been droped in the expression for 2L,

and t~wm which contribute to th. added ass force hav been ig-.
oerd in the expression fory

The pins sr ha the body is obtained from the (three-

diuensional) Bernoulli equation in moving ooordinates. Expressed

in term of oylindrioal coordinates this is

'~ .~w~~x(2:L sin a + -Cot 9)

2L -,L[(.Le)21.)- Q [(L),)4{" ) ] (71)

But is of the order of the body motions according to Equa-~ 

I1

tio. (66), and we viil consistently Ignore squares of the body

otions. Henoe the pressure simplifies to

-L (72)

The vertical force per unit length is given by Equation (13).

After taking the real part, Equations (67-69) m t be subtituted

into Equation (72) and thence into Equation (13)o In so doing,
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all quadratic teram in the body motions are to be ignored, and

th orthogonal properties of the trigonometric term in may

beusd* If at the e, time j we Ignore hl.eI orr term in

body radius* we amr finally led to the following expression for

the eavi ng fox per unit lengths

* K~)' F(~~ ( . .]
k nrr

+ 'lro ~W -)e + w.. .Ir.. . (73)• ..K r: . ... (,.

In arrivig at. Equation (73) it has been asswvd that the surge

velocity u is of the ams oxr of magnitude as the heaving

velocity w *in which case the specific dependence of the verti-

cal foym on u is negligible for a slender bodye.

Equation (73) can be simplified even further by taking

Into acoount the order of magnitude of the body motions (which

awe wave induoed), and also by focusing attention m the total

force instead of the force per unit length.

Consider the body motions, and let each notion be repzo-

seated by a slowly varying part plus a rapidly oscillating part,

in the m r manner as for the beam sea case. For head asea, t

oscillating part of the notion will certainly be smaller than the

motion of a water particle and so the oscillatory displacements

given by Equation (32) represent upper bounds. An upper bound

on the oscillatory velocities will then be

N " ) (74)
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The drifting velocities wo , qo which are wave-induced amo

clearly much smaller than the wave speed a , and hene the

drifting terms which appear in the coo k term of Equation

(73) are negligible compared with the entire sin ky term.

Upon estimating the oscillatory velocities with the aid of

Equation (7) we obtain an upper bound for the coo kx term

of Equation (73)

which is seen to be of the same order of magnitude as the first

term of Equation (73)., i.e. O($ a% c k) * On the basis of

this argument* we must retain the cos k ter. However, the

total forcs is the integral over the length of the body. Inte-

grating the first torn of Equation (73) over the length of the
body, it is seen that this tern is O(f a'c'k A ) where the

ordering hypothesis kR a 0(1) has been utilized. On the other

hand, integrating Equation (75) over the length of the body,

there is obtained

2,T a% G" e 2 m- .) C0*4c~x(76)

According to the Riomann-Lebesque lea (Reference 03), as

k..oo the integral is 0(1/k) Hencoe, the cor kX term is,

in effect, O( aa) * The ratio of this term to the first

term of Equation (73) is (/I ) which may be megleotedo For

a closed body 1/K/(kR) vanishes at the end points of the into-

gral-andq in this case, if the body radius has a continuous first

derivative, it can be shown, by an integration by parts, that the
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ratio of the con k. term to the first term of Equation (73)

actually vanishes as (1/ki )2 0 A similar argument can be

used to show that the oscillatory parts of! and m nay be

neglected in the exponentials of the remaining terms. Hence,

the total heaving force becomes

(77)

where

(k Wk)___ (78)

I (79)

and the integrations extend over the length of the body. The

universal functions O, and d are tabulated in Table I.

The result for head. seas may be contrasted with that

for bean seas. In the bean sea case the oscillatory body motions

contribute term of the same order of magnitude as the suction

force on a stationary body, and, furthermore , the body motions

tend to reduce the suction force by reducing the relative notion

of body to water. In the head sea case, the body motions am not

necessarily in phase with the water notion, and hence do not

necessarily reduce the suction force. But, in any event, the

effect of the body motions is of higher order, and may be neglect-

pd. Because of the relief afforded the suction force in the beam
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sea cases we may expect the suction force to be smaller in beau

seas than in head seas.

In the long wave limit the ordering hypothesis is

KR e 1 , kZ a O(l) . The analysis has been carried out by

Cuthbert and Kerr E8] for long waves, and they demonstrate that

the effect of body motions is present in the force per unit

length for head seas as it is in the present analysis. However,

if in the long wave analysis we take the limit k-ft 9a and

assume that body nations are bounded in accordance with Equation

(74), the effect of body notions on the integrated force in head

seas is negligible. If in the present analysis we let KR -b 0

then d,-) 1. , -1 and Equation (77) reduces to the long

wave solution for k --f *a

The pitching moant can easily be obtained by introduce-

ing an x into the integrand in Equation (77). The lateral force

and yawing moment are, of course, zero for head seas.

In a similar fashion, and neglecting terms of the order

of the square of the wave nplitude, we can derive the following

expression for the surge force

where ()

whom

The universal function 0.(kR) is tabulated in Table I. In the

long wave linit (' 3 -- 1 , and Equation (80) reduces to the
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eaonmet long wave solution (see Referenoe 1]).

ZU1.A. RANDOM SEAS

Arguments similar to that used for bean seas lead to

the following expressions for the steady suction force in head

seas when the waves are described by a spectrum Aa(CA) Z

z*~ (62)*zo

The fluctuating force Is

4P

(13)

The fluctuating surge force is

- C..) S4. cV.?k r .SL (x- i~ ~t x

Using a Neumann spectrum (Equatien (39)), the steady suction foros

1W long waves d, .* 1.5 and the c integral an be evaluated ex-

actly

zo C Vs(e-)
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For the deeply submerged case, the method of steepest descents

yields

C v ge -4 S .)/ V w & ) (-( 8 7 )

2. L 8I
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Tables of the functions ,

22.&

kR &OMR) ct,(kR) 16(kR) C (k R

0.0 0.00000 1.5000 -1.00000 1.000

0.1 0.00501 15035 -0.990n.1. 1.009

0.2 0.02013 1.5221 -097532 1.026

0.3 00568 1.o5569 -0.96124. 1.050

0.1 0.906216 1.6127 -0.95061 1.060

0.5 0.13032 1.6899 -0.9.1.00 1.115

0.6 0.19123 1.7900 -0.94197 1.16.

0.7 0.265685 1.9151 -0.94n442 1.198

0.6 0.8601 2,0676 -0.95125 1.2147

0.9 0..6352 2.2506 -0.9623 1.300

1.0 0.5906. 2,1.680 -0.97758 1,$81

11 0.74009 2722 -0,99689 1.1422

1.2 0.91610 3.0264. -1,0202n4 1.190
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cIt

4 Y6

FIGURE 1, BODY IN REGULAR OBLIQUE WAVES
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APPENDIX

In Equation (15) a number of definite integrals must be

evaluated* We will show how these integrals can be obtained.

Consider the integral

s;n 9. e Ik e (Al)

If the substitution (9 + r /2 is made, the integral can

be reduced to

which, according to formula ( ) on p. 181 of Reference (61, is

4 2.i-X(w (A2)f

Consider the integral

If the substitution 0 a d6 + /2 is made, the integral can

be reduced to

0

By using the product into sui formula for trigonometric functions

this can be expanded into

0
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In order to evaluate those two integrals, ooenider the following

identity (see Reference [C]).

Let y-x , and we obtain

S0 V-< (A.)

By applying Equation (M), it is seen, finally, that the integral

presented in Equation A3) reduces to

!: kd'w1z(AS)
L

Similarly, the integral
tT

\eO nOCfl~ *COS I R~coe -kt+ kf d (AG)
0

an be shown to be

Also the ton=CA

(AS) 

can, similarly, be shown to be


